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ABSTRACT

Let K be an infinite field with characteristic different from two and

S
n(K) the n-sphere over K. We show that ambient polynomial automor-

phisms of S
n(K) preserve the quadratic form x2

0 + · · ·+ x2
n

and the group

Aut (Kn+1, S
n(K)) of such automorphisms of S

n(K) is isomorphic to the

(n + 1)-orthogonal group O(n + 1, K) provided K is real.

Next, the restriction map Aut(K3, S
2(K)) → Aut (S2(K)) yields a

surjection provided K is an algebraically closed field as well. Furthermore,

for any such a field K, there is an imbedding

K[X1 . . . , Xm]
m(m−1)

2
+mn

−→ Aut (K2m+n, S
2m+n−1(K)).
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Introduction

Given an algebra A over a field K, a description of the automorphism group

Aut (A), one of its most important characteristic, is really a very hard problem.

A geometric counterpart of that is a description of polynomial automorphisms

Aut (V ) of the corresponding affine variety V . Though that problem for the

plane K2 was settled in [4, 5], the problem of finding all polynomial automor-

phisms of K3 is still open. By [8], polynomial automorphisms of hypersurface

of degree d ≥ 3 in the (n+ 1)-projective space are finite except for some cases.

In the light of [1], the automorphism group Aut (S1(K)) of the circle S
1(K) over

an infinite field K is isomorphic to the orthogonal group O(2,K). Furthermore,

by the results of [2], the circle is the only compact connected curve with such

an infinite group provided K is the field of reals.

Polynomial automorphisms of the hypersurface in K3 given by xn
0x1 = P (x2)

with n ≥ 1 were considered first in [6] for n = 1 and then in [7] for n > 1. In

particular, automorphisms of the 2-dimensional sphere S
2(K) over K could be

derived, provided i ∈ K with i2 = −1. In the light of [2], given a hypersurface

V determined by a proper polynomial map R
n+1 → R over the reals R for

n ≥ 0, the group Aut (Rn+1, V ) of ambient automorphism of V is isomorphic

to an algebraic subgroup of the orthogonal group O(q) for some q. The aim

of this note is studying the automorphism groups Aut (Sn(K)) and ambient

automorphisms Aut (Kn+1, Sn(K)), where S
n(K) is the n-sphere over a field

K.

Section 1 investigates the group Aut (Kn+1, Sn(K)) and studies the restric-

tion map ρn(Kn+1, Sn(K)) : Aut (Kn+1, Sn(K)) → Aut (Sn(K)). We generalize

the result of [2] and derive in Proposition 1.5 that the group Aut(Kn+1, Sn) coin-

cides with polynomial automorphisms of Kn+1 preserving the form x2
0 + · · ·+x2

n

provided K is an infinite field with characteristic different from two. We derive

in Corollary 1.6 that Aut (Kn+1, Sn(K)) = O(n + 1,K), provided K is a real

field. In Proposition 1.10 we make use of [1] to show that

ρ1(K
2, S1(K)) :Aut (K2, S1(K)) → Aut (S1(K))

is an isomorphism. Next, in Corollary 1.12 we derive from [6] that

ρ2(K
3, S2(K)) :Aut (K3, S2(K)) → Aut (S2(K))

is a surjection for any algebraically closed field K with characteristic different

from two.
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Section 2 is devoted to polynomial automorphisms for higher dimensional

spheres. In particular, an injective map

K[X1, . . . , Xm]
m(m−1)

2 +mn −→ Aut (K2m+n, S2m+n−1(K))

of the (m(m−1)
2 +mn)-th Cartesian power of the polynomial ring K[X1, . . . , Xm]

endowed with an appropriate group structure is constructed.

Acknowledgments. The authors are grateful to the referee whose comments

helped to make this paper more transparent.

1. Ambient polynomial automorphisms

Let K[X0, . . . , Xn] be the polynomial ring in indeterminates X0, . . . , Xn over a

field K. Given an affine irreducible variety V ⊆ Kn+1, write Aut (V ) (resp.,

Aut (Kn+1, V )) for the group of polynomial (resp., ambient) automorphisms of

V . Clearly, we have the restriction map

ρn(Kn+1, V ) : Aut (Kn+1, V ) → Aut (V ).

Note that the group Aut (V ) is anti-isomorphic to the group of K-automor-

phisms of the ring K[V ] of regular functions on V provided K is algebraically

closed.

Now, let

S
n(K) = {(x0, . . . , xn) ∈ Kn+1; x2

0 + · · · + x2
n = 1}

be the n-sphere over K. If the field K is finite then it is well-known that

Aut (Sn(K)) coincides with the group of self-bijections of S
n(K). For K with

characteristic two, the sphere S
n(K) is actually the hyperplane given by

x0 + · · · + xn = 1. Then, the polynomial map Φ : S
n(K) → Kn given by

Φ(x0, . . . , xn) = (x1, . . . , xn) for (x0, . . . , xn) ∈ S
n(K) yields isomorphisms

of the groups Aut (Sn(K)) and Aut (Kn+1, Sn(K)) with Aut (Kn) and

Aut (Kn+1,Kn), respectively. Furthermore, the map Φ and the restriction map

ρn(Kn+1, Sn(K)) : Aut (Kn+1, Sn(K)) → Aut (Sn(K)) lead to a splitting short

exact sequence

1 → Ker ηn −→ Aut (Kn+1,Kn)
ηn−→ Aut (Kn) → 1

of groups, where

(0, ηn(ϕ)(x1, . . . , xn)) = ϕ(0, x1, . . . , xn)
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for any ϕ ∈ Aut (Kn+1,Kn) and (x1, . . . , xn) ∈ Kn. Note that any polynomial

p1(X0), . . . , pn(X0, . . . , Xn−1) ∈ K[X0, . . . , Xn] gives rise to the polynomial au-

tomorphism

(αX0, X1 +X0p1(X0), . . . , Xn +X0pn(X0, . . . , Xn−1))

if α 6= 0. Such automorphisms form a subgroup of ∈ Ker ηn.

Remark 1.1: If K is a finite field, then the restriction map

ρn(Kn+1, Sn(K)) : Aut (Kn+1, Sn(K)) → Aut (Sn(K))

is obviously surjective but never injective.

For the rest of this paper we always assume the field K to be infinite and

with characteristic different from two.

Let 〈x, y〉 =
∑n

i=0 xiyi for x = (x0, . . . , xn), y = (y0, . . . , yn) ∈ Kn+1. Write

Gn+1(K) for the monoid of all polynomial maps ϕ : Kn+1 → Kn+1 such that
〈

ϕ(x), ϕ(x)
〉

=
〈

x, x
〉

for any x ∈ Kn+1 and observe that if K is a real field,

then deg(ϕ) < 2 for ϕ ∈ Gn+1(K). We recall that a field K is called real if

−1 6= x2
1 + · · · + x2

n for any x1, . . . , xn ∈ K. It is also clear that O(n + 1,K) ⊆
Gn+1(K), where O(n+ 1,K) denotes the (n+ 1)-orthogonal group over K.

Proposition 1.2: If ϕ ∈ Aut (Sn(K)) is given by polynomials of global degree

at most one, then ϕ ∈ O(n + 1,K).

Proof. Let ϕ = (ϕ0, . . . , ϕn) and write ϕs(X0, . . . , Xn) =
∑n

t=0 astXt + as for

s = 0, . . . , n or in the matrix form ϕ(X) = AX + a, where A = [ast]0≤s,t≤n,

a =

(

a0

...
an

)

and X =

(

X0

...
Xn

)

. If x ∈ S
n(K), then certainly ϕ(±x) ∈ S

n(K).

Hence, 1 = 〈ϕ(±x), ϕ(±x)〉 = 〈±Ax+a,±Ax+a〉 = 〈Ax,Ax〉±2〈Ax, a〉+〈a, a〉.
This implies 〈Ax, a〉 = 0 and 〈Ax,Ax〉 + 〈a, a〉 = 1 for all x ∈ S

n(K).

Now, we show that 〈a, a〉 = 0. In fact, suppose that 〈a, a〉 6= 0 and consider
a√
〈a,a〉

∈ S
n(K), where K is the algebraic closure of K. By means of [1], the

sphere S
n(K) is Zariski dense in S

n(K) so we may regard ϕ as an automorphism

of S
n(K). But there is x ∈ S

n(K) with ϕ(x) = Ax+ a = a√
〈a,a〉

and so

√

〈a, a〉 = 〈ϕ(x), a〉 = 〈Ax, a〉 + 〈a, a〉 = 〈a, a〉.
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Then 〈a, a〉 = 1 and ϕ(x) = Ax+ a = a imply Ax = 0. Consequently, ϕ(−x) =

−Ax + a = a = ϕ(x). But ϕ is injective, so −x = x and this leads to a

contradiction because x ∈ S
n(K).

Therefore AtA = In+1 i.e., A ∈ O(n + 1,K). This also implies 〈x,Ata〉 = 0

for all x, and so a = 0 and consequently ϕ ∈ O(n+ 1,K).

If ϕ = (ϕ0, . . . , ϕn) : Kn+1 → Kn+1 is a polynomial map, write

Jϕ =







∂ϕ0

∂x0
. . . ∂ϕ0

∂xn

. . . . . . . . .
∂ϕn

∂x0
. . . ∂ϕn

∂xn







for its Jacobian.

Proposition 1.3: If ϕ ∈ Gn+1(K) then the following four conditions are equiv-

alent:

(a) ϕ(0) = 0;

(b) ϕ−1(0) 6= ∅;
(c) (Jϕ)(0) ∈ O(n+ 1,K);

(d) det (Jϕ)(0) 6= 0, where Jϕ is the Jacobian of ϕ.

Proof. The condition
〈

ϕ(x), ϕ(x)
〉

=
〈

x, x
〉

for x ∈ Kn+1 implies

∂

∂xj

〈ϕ(x), ϕ(x)〉 =
∂

∂xj

〈x, x〉

or equivalently
∑n

i=0 ϕi(x)
∂ϕi

∂xj
(x) = xj for ϕ = (ϕ0, . . . , ϕn), j = 0, . . . , n and

x = (x0, . . . , xn) ∈ Kn+1. Therefore, we have in the matrix form

(1) (Jϕ)(x)tϕ(x) = x

for x ∈ Kn+1 and this clearly gives the equivalence of (a) and (b).

Then, we derive from (1)

〈

ϕ(x), (Jϕ)(x)x′
〉

=
〈

x, x′
〉

for any x, x′ ∈ Kn+1 and so, replacing x, x′ 7→ λx we obtain

λ〈ϕ(λx), (Jϕ)(λx)x〉 = λ2〈x, x〉

for any λ ∈ K. Hence,

(2) 〈ϕ(λx), (Jϕ)(λx)x〉 = λ〈x, x〉
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for all λ ∈ K because both sides are polynomials in λ and the field K is infinite.

Applying d
dλ

to (2), we obtain

〈 d
dλ

(Jϕ)(λx)x, ϕ(λx)〉 + 〈(Jϕ)(λx)x, (Jϕ)(λx)x〉 = 〈x, x〉.

Now, for λ = 0, we have

(3) 〈 d
dλ

(Jϕ)(λx)x|λ=0, ϕ(0)〉 + 〈(Jϕ)(0)x, (Jϕ)(0)x〉 = 〈x, x〉.

Then, from (3) we deduce that (a)=⇒(c).

The implication (c)=⇒(d) is obvious since det (Jϕ)(0) = ±1 if (Jϕ)(0) ∈
O(n + 1,K).

To show (d)=⇒(a) observe that for λ = 0, (2) gives 〈ϕ(0), (Jϕ)(0)x〉 = 0 for

any x ∈ Kn+1; and since the matrix (Jϕ)(0) is invertible, we obtain ϕ(0) = 0

and the proof is complete.

Corollary 1.4: Any element ϕ ∈ Gn+1(K) such that ϕ(0) = 0 can be written

as a product of an element in O(n+1,K) and ψ ∈ Gn+1(K) such that ψ(0) = 0

and (Jψ)(0) = In+1 and so ψ(x) = x+ ψ2(x) + · · · + ψt(x), where ψd(x) is the

homogeneous component of ψ with degree d for d = 2, . . . , t.

Furthermore, we may state:

Proposition 1.5: Aut (Kn+1, Sn(K)) = Aut (Kn+1) ∩Gn+1(K).

Proof. The inclusion Aut (Kn+1)∩Gn+1(K) ⊆ Aut (Kn+1, Sn(K)) is clear. To

show the opposite inclusion, given ϕ = (ϕ0, . . . , ϕn) ∈ Aut (Kn+1, Sn(K)), the

polynomial
∑n

i=0 ϕ
2
i−1 is irreducible because

∑n
i=0X

2
i −1 is so. But

∑n
i=0 ϕ

2
i−1

vanishes on the sphere S
n and so

n
∑

i=0

ϕ2
i − 1 = α

( n
∑

i=0

X2
i − 1

)

for some α ∈ K∗. Then we derive, as in the proof of Proposition 1.3:

(4) (Jϕ)(x)tϕ(x) = αx

for all x ∈ Kn+1. If we choose now x ∈ Kn+1 such that ϕ(x) = 0, (4) gives

x = 0. Therefore, ϕ(0) = 0 and so α = 1 and then ϕ ∈ Gn+1(K).

Then, by Proposition 1.5 and the obvious degree argument consideration, we

can derive:
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Corollary 1.6: If K is a real field, then Gn+1(K) = O(n + 1,K) =

Aut (Kn+1, Sn(K)).

The following example shows that if i ∈ K then there are polynomial maps

ϕ ∈ Gn+1(K) with ϕ(0) 6= 0 and so Gn+1(K) 6⊆ Aut (Kn+1, Sn(K)) in general.

Example 1.7: For n ≥ 2, consider the polynomial map ϕ : Kn+1 −→ Kn+1

given by

ϕ(x0, . . . , xn) =
(1

2
(x2

0 + · · · + x2
n

)

, i
(1

2
(x2

0 + · · · + x2
n) − 1

)

, 1, 0, . . . , 0)

for any (x0, . . . , xn) ∈ Kn+1.

It is obvious that ϕ ∈ Gn+1(K) but ϕ(0) = (0,−i, 1, 0, . . . , 0).

Given a real field K, write K(i) for its extension with i2 = −1, U(n+1,K(i))

for the (n+ 1)-st unitary group over the field K(i) and U(K(i)n+1,K ×K(i)n)

for the subgroup of U(n + 1,K(i)) formed by ambient maps with respect to

K ×K(i)n. If ϕ = (ϕ0, . . . , ϕn) ∈ AutK(i)n+1 and

ϕj = ϕj(X0 + iX ′
0, . . . , Xn + iX ′

n)

= ϕ′
j(X0, . . . , Xn, X

′
0, . . . , X

′
n) + iϕ′′

j (X0, . . . , Xn, X
′
0, . . . , X

′
n)

for j = 0, . . . , n, then we get (ϕ′
1, ϕ

′′
1 , . . . , ϕ

′
n, ϕ

′′
n) ∈ Aut (K2n+2). Because

S
2n+1(K) ⊆ K(i)n+1 and S

2n(K) ⊆ K ×K(i)n , in view of Corollary 1.6, we

can state:

Remark 1.8: Let K be a real field. Then, Aut (K(i)n+1, S2n+1(K)) =

U(n+ 1,K(i)) and Aut (K ×K(i)n, S2n(K)) = U(K(i)n+1,K ×K(i)n).

By [3], an affine variety V ⊆ Kn+1 is called an identity set for polynomial

automorphisms of Kn+1 if the restriction map

ρn(Kn+1, V ) : Aut (Kn+1, V ) → Aut (V )

is a monomorphism. Thus, in the light of the discussion above, we can state:

Theorem 1.9: Let K be a real field. Then, for n ≥ 0:

(a) S
n(K) is an identity set for polynomial automorphisms of Kn+1;

(b) S
2n+1(K) is an identity set for polynomial automorphisms of K(i)n.

(c) S
2n(K) is an identity set for polynomial automorphisms of K ×K(i)n.

Furthermore, it holds:
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Proposition 1.10: The restriction map

ρ1(K
2, S1(K)) : Aut(K2, S1(K)) → Aut (S1(K))

is an isomorphism.

Proof. In virtue of [1], it holds Aut (S1(K)) = O(2,K). Hence, the map

ρ1(K
2, S1(K)) : Aut (K2, S1(K)) → Aut (S1(K)) is surjective becauseO(2,K)⊆

Aut (K2, S1(K)).

Now, if ϕ = (ϕ0, ϕ1) ∈ Ker ρ1(K
2, S1(K)), then, by Proposition 1.5, ϕ2

0+ϕ
2
1 =

X2
0 +X2

1 . Because S
1(K) is Zariski dense in S

1(K), we may assume that i ∈ K

with i2 = −1. Hence, (ϕ0 + iϕ1)(ϕ0 − iϕ1) = X2
0 + X2

1 . But ϕ0 and ϕ1

are algebraically independent and so deg (ϕ0 + iϕ1) = deg (ϕ0 − iϕ1) = 1 and

degϕ0 = degϕ1 = 1. By Proposition 1.2, we get that ϕ ∈ O(2,K). But

ϕ ∈ Kerρ1(K
2, S1(K)) so ϕ is the identity automorphism of K2.

Now, we aim to show the surjectivity of the restriction map

ρ2(K
3, S2(K)) : Aut (K3, S2(K)) → Aut (S2(K))

for any algebraically closed field K. We point out that over such a field the

2-sphere S
2(K) might be described by x0x1 + x2

2 = 1.

Given an algebraically closed field K, Makar-Limanov [6] considers the factor

K-algebra K[X0, X1, X2]/(X0X1 − p(X2)) for any polynomial p ∈ K[X ]. If

p(X2) = 1 −X2
2 then [6, Theorem] yields:

Corollary 1.11: Let K be an algebraically closed field K.

Then, the group Aut(K[X0, X1, X2]/(X0X1 + X2
2 − 1)) is generated by the

following automorphisms:

(1) hyperbolic rotations Hλ(X0) = λX0, Hλ(X1) = λ−1X1, Hλ(X2) = X2

for λ ∈ K∗;

(2) involution I(X0) = X1, I(X1) = X0, I(X2) = X2;

(3) the symmetry S(X0) = X0, S(X1) = X1, S(X2) = −X2;

(4) triangular ∆p(X0) = X0, ∆p(X1) = X1 − 2X2p(X0) − X0p
2(X0),

∆p(X2) = X2 +X0p(X0) for p(X) ∈ K[X ].

Now, consider the isomorphism of K-algebras

K[X0, X1, X2]/(X0X1 +X2
2 − 1)

∼=−→ K[X0, X1, X2]/(X
2
0 +X2

1 +X2
2 − 1)
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given by the assignment (X0, X1, X2) 7→ (X0 + iX1, X0 − iX1, X2). Then, its

inverse sends (X0, X1, X2) 7→ (X0+X1

2 , X0−X1

2i
, X2).

Thus, those four types of the maps above generate

Aut (K[X0, X1, X2]/(X
2
0 +X2

1 +X2
2 − 1))

and they certainly lead to generators of the group Aut (S2(K)) as well. But any

of those generators is extensible to a polynomial automorphism of K3. Thus,

in view of Corollary 1, we can state:

Corollary 1.12: Let K be an algebraically closed field K. Then, the restric-

tion map

ρ2(K
3, S2(K)) : Aut (K3, S2(K)) → Aut S

2(K)

is a surjection.

By [1], the sphere S
2(K) is Zariski dense in S

2(K), where K is the algebraic

closure of K. Thus, any polynomial automorphism ϕ ∈ Aut (S2(K)) yields

ϕ′ ∈ Aut (S2(K)) rising, in the light of the above, a polynomial automorphism of

K
3

as well. But we cannot say that ϕ′ restricts to a polynomial automorphism

of K3 to claim that the restriction map ρ2(K
3, S2(K)) : Aut (K3, S2(K)) →

Aut (S2(K)) is a surjection.

For a real field K, by Corollary 1.6, Aut(Kn+1, Sn(K)) = O(n+1,K). Hence,

ρn(Kn+1, Sn(K)) : Aut (Kn+1, Sn(K)) → Aut (Sn(K)) is an injection.

We close this section with

Conjecture 1.13: For any n ≥ 1, the restriction map

ρn(Kn+1, Sn(K)) : Aut (Kn+1, Sn(K)) → Aut (Sn(K))

leads to:

(a) a surjection, provided K is an infinite field with characteristic different

from two;

(b) an isomorphism, provided K is a real field. Consequently, Aut (Sn(K)) =

O(n + 1,K).

2. Polynomial automorphisms for higher dimensions

Now, we aim to present another set of generators of the group

Aut(K[X0, X1, X2]/(X0X1 +X2
2 − 1)).
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Consider the set {±1} ×K∗ ×K[X ] with the multiplication

◦ : ({±1} ×K∗ ×K[X ]) × ({±1} ×K∗ ×K[X ]) → {±1} ×K∗ ×K[X ]

given by

(ε, λ, p(X)) ◦ (ε′, λ′, p′(X)) = (εε′, λλ′, ε′λ′
−1
p(λ′

−1
X) + p′(X))

for

(ε, λ, p(X)), (ε′, λ′, p′(X)) ∈ {±1} ×K∗ ×K[X ].

Then, the pair ({±1}×K∗ ×K[X ], ◦) is a group, where (1, 1, 0) is its unit ele-

ment and (ε, λ, p(X))−1 = (ε, λ−1,−ελp(λX)). Furthermore, for (ε, λ, p(X)) ∈
{±1} ×K∗ ×K[X ], the map

ϕ′ : K[X0, X1, X2] → K[X0, X1, X2]

given by:














ϕ′(X0) = λX0,

ϕ′(X1) = λ−1X1 − 2εX2p(λX0) − λX0p
2(λX0),

ϕ′(X2) = εX2 + λX0p(λX0)

is a K-algebra automorphism with the inverse given by:














ϕ′−1
(X0) = λ−1X0,

ϕ′−1(X1) = λ(X1 + 2X2p(X0) −X0p
2(X0)),

ϕ′−1
(X2) = ε(X2 −X0p(X0)).

We recall that a K-automorphism of K[X0, . . . , Xn] is called elementary it it

has a form

(X0, . . . , Xn) 7→ (X0, . . . , Xi−1, λXi + p,Xi+1, . . . , Xn],

where λ ∈ K∗ and p ∈ K[X0, . . . , Xi−1, Xi+1, . . . , Xn] for some i = 0, . . . , n. A

K-automorphism of K[X0, . . . , Xn] is tame if it is a composition of elementary

automorphisms. Note that ϕ′ is a tame automorphism of K[X0, X1, X2] as the

composition of three elementary automorphisms.

Furthermore, the relation ϕ′(X0)ϕ
′(X1) + ϕ′(X2)

2 = X0X1 + X2
2 shows

that ϕ′ yields a K-automorphism ϕ : K[X0, X1, X2]/(X0X1 + X2
2 − 1) →

K[X0, X1, X2]/(X0X1 +X2
2 − 1). It is easy to check that the assignment above

determines a group monomorphism

Φ : {±1} ×K∗ ×K[X ] −→ Aut(K[X0, X1, X2]/(X0X1 +X2
2 − 1)).



Vol. 168, 2008 ON POLYNOMIAL AUTOMORPHISMS OF SPHERES 285

If p(X) = anX
n + · · · + a1X + a0 with an 6= 0 and (ε, λ, p(x)) ∈

{±1} ×K∗ ×K[X ], then clearly

(ε, λ, p(X)) = (ε, λ, 0) ◦ (1, 1, p(X)) = (1, λ, 0) ◦ (ε, 1, 0) ◦ (1, 1, p(X)) =

(1, λ, 0) ◦ (ε, 1, 0) ◦ (1, 1, a0) ◦ · · · ◦ (1, 1, anX
n).

This shows that the image of the monomorphism

Φ : {±1} ×K∗ ×K[X ] −→ Aut(K[X0, X1, X2]/(X0X1 +X2
2 − 1))

is generated by the following three types of automorphisms:

(1) (hyperbolic rotations) Hλ(X0) = λX0, Hλ(X1) = λ−1X1, Hλ(X2) = X2

for λ ∈ K∗;

(2) (the symmetry automorphism) S(X0) = X0, S(X1) = X1, S(X2) = −X2

and

(3) (triangular automorphisms)

∆λ,n(X0) = X0, ∆λ,n(X1) = X1 − 2λX2X
n
0 − λ2X2n+1

0 ,

∆λ,n(X2) = X2 + λXn+1
0

for λ ∈ K∗ and n ≥ 0.

But (1, λ, 0) ◦ (1, 1, Xn) ◦ (1, λ−1, 0) = (1, 1, λn+1Xn) and the polynomial

Xn+1 − λ has a root in K because the field K is algebraically closed. Finally,

in the light of Corollary 1, we can state for an algebraically closed field K

Remark 2.1: The group Aut(K[X0, X1, X2]/(X0X1 +X2
2 − 1)) is generated by

the automorphisms (1)–(3) from Corollary 1 and

triangular ∆1,n(X0) = X0,∆1,n(X1) = X1 − 2X2X
n
0 −X2n+1

0 ,(4′)

∆1,n(X2) = X2 +Xn+1
0 for n ≥ 0.

In particular, the subgroup Aut1(K[X0, X1, X2]/(X0X1 +X2
2 −1)) of automor-

phisms with degree at most one is generated by: Hλ, I, S and ∆1,0.

Hence, generators of the group Aut (K[X0, X1, X2]/(X0X1 − 1 + X2
2 )) de-

scribed in Remark 2.1 correspond to the following ones of

Aut (K[X0, X1, X2]/(X
2
0 +X2

1 +X2
2 − 1))

in matrix forms:

Any hyperbolic rotation Hλ yields the rotation

H ′
λ : K[X0, X1, X2]/(X

2
0 +X2

1 +X2
2 − 1) → K[X0, X1, X2]/(X

2
0 +X2

1 +X2
2 − 1)
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given by the matrix

(

λ−1+λ
2

i(λ−1
−λ)

2 0

−i(λ−1
−λ)

2
λ−1+λ

2 0
0 0 1

)

from the special orthogonal group

SO(3,K) for λ ∈ K∗.

The involution map I is sent to the map

I ′ : K[X0, X1, X2]/(X
2
0 +X2

1 +X2
2 − 1) → K[X0, X1, X2]/(X

2
0 +X2

1 +X2
2 − 1)

given also by the orthogonal matrix
(

1 0 0
0 −1 0
0 0 1

)

.

The triangular map ∆1,n produces a map

∆′
1,n : K[X0, X1, X2]/(X

2
0 +X2

1 +X2
2 −1) → K[X0, X1, X2]/(X

2
0 +X2

1 +X2
2 −1)

given by:

∆′
1,n(X0) = (1 − (X0 + iX1)

2n

2
)X0 − i

(X0 + iX1)
2n

2
X1 − (X0 + iX1)

nX2,

∆′
1,n(X1) = −i (X0 + iX1)

2n

2
X0 + (1 +

(X0 + iX1)
2n

2
)X1 − i(X0 + iX1)

nX2

and

∆′
1,n(X2) = (X0 + iX1)

nX0 + i(X0 + iX1)
nX1 +X2.

Observe that ∆′
1,n can be also given by the matrix from SO(3,K[X0 + iX1]):







1 − (X0+iX1)2n

2 −i (X0+iX1)2n

2 −(X0 + iX1)
n

−i (X0+iX1)2n

2 1 + (X0+iX1)2n

2 −i(X0 + iX1)
n

(X0 + iX1)
n i(X0 + iX1)

n 1






.

The symmetry map S is sent to

S′ : K[X0, X1, X2]/(X
2
0 +X2

1 +X2
2 − 1) → K[X0, X1, X2]/(X

2
0 +X2

1 +X2
2 − 1)

given also by the orthogonal matrix
(

1 0 0
0 1 0
0 0 −1

)

.

Given ϕ ∈ Aut(Kn+1, Sn(K)), let ϕ−1 : Kn+1 → Kn+1 be such that

ϕ ◦ ϕ−1 = ϕ−1 ◦ ϕ = idKn+1 . Then, (Jϕ−1)(ϕ(x))(Jϕ)(x) = In+1 and con-

sequently ((Jϕ)(x))−1 = (Jϕ−1)(ϕ(x)). Since ϕ ∈ Aut (Kn+1, (Sn)), by Propo-

sitions 1.3 and 1.5, we have det (Jϕ)(x) = det (Jϕ)(0) = ±1. Furthermore, the

relation (Jϕ)(x)tϕ(x) = x yields ϕ(x) = (((Jϕ)(x))−1)tx for x ∈ Kn+1.

Therefore, by composing with (Jϕ)(0)−1 we can always assume that ϕ is

such that (Jϕ)(0) = In+1 and det (Jϕ)(x) = 1 for x ∈ Kn+1. Hence, given

ϕ ∈ Aut (Kn+1, Sn), we can always assume, by composing with an element of

O(n + 1,K), that ϕ(x) = ϕ̃(x)x for x ∈ Kn+1, ϕ̃ ∈ SL(n + 1,K[X0, . . . , Xn])
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with ϕ̃(0) = In+1 for the special linear group SL(n + 1,K[X0, . . . , Xn]) over

the polynomial ring K[X0, . . . , Xn].

Certainly, O(n+ 1,K) ⊆ Aut (Kn+1, Sn(K)),Aut (Sn(K)) for n ≥ 1 and any

field K. Now, we plan to find other groups included into Aut (Kn+1, Sn(K)).

Let K be a commutative ring and denote by Sm,n(K) the set of all couples

(a, λ), where a ∈ Mm,n(K) is an m × n-matrix over K and λ ∈ Mm(K) is an

m×m-matrix over K such that

λ+ λt + aat = 0,

where at denotes the transpose of the matrix a.

We also consider the case n = 0 and Sm,0(K) consists of the additive group

of skewsymmetric m×m matrices over K.

For m,n ≥ 1, we define a group structure on Sm,n(K) by

(a, λ).(a′, λ′) = (a+ a′, λ+ λ′ − aa′t).

The definition is clearly correct, the unit element is (0, 0), the inverse of (a, λ)

is (−a, λt) and associativity is easily checked.

Observe that for 1/2 ∈ K, there is an obvious bijection K
m(m−1)

2 +mn
∼=−→

Sm,n(K).

The following proposition is easy to check.

Proposition 2.2: For i ∈ K with i2 = −1, there is a group monomorphism

ϕm,n(K) : Sm,n(K) −→ SO(2m+ n,K)

given by

ϕm,n(K)(a, λ) =







Im + λ iλ a

iλ Im − λ ia

−at −iat In






,

for n ≥ 1 and

ϕm,0(K)(λ) =

(

Im + λ iλ

iλ Im − λ

)

,

for n = 0, where Im is the unit m×m-matrix.

For (a, λ) ∈ Sm,n(K[X1, . . . , Xm]) define a polynomial map

Φm,n(K)(a, λ) : K2m+n −→ K2m+n
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by

Φm,n(K)(a, λ)(x, y, z)=







Im + λ(x+ iy) iλ(x+ iy) a(x+ iy)

iλ(x+ iy) Im − λ(x + iy) ia(x+ iy)

−a(x+ iy)t −ia(x+ iy)t In













x

y

z






,

where x = (x1, . . . , xm), y = (y1, . . . , ym) and z = (z1, . . . , zn).

The next proposition is again an easy checking.

Proposition 2.3: The above map Φm,n(K)(a, λ) is a polynomial automor-

phism ofK2m+n, Φm,n(K)(a, λ) ∈ G2m+n(K) for (a, λ) ∈ Sm,n(K[X1, . . . , Xm])

and

Φm,n(K) : Sm,n(R[X1, . . . , Xm]) −→ Aut(K2m+n, S2m+n−1(K))

is a group monomorphism.

In this way, we get that the group monomorphism

Φm,n(K) : Sm,n(R[X1, . . . , Xm]) −→ Aut(K2m+n, S2m+n−1(K))

leads to an imbedding

K[X1 . . . , Xm]
m(m−1)

2 +mn −→ Aut (K2m+n, S2m+n−1(K)).

provided 1/2 ∈ K.

Observe, in particular that Aut(K2n, S2n−1(K)) contains the subgroups

Φj,2k(K)(Sj,2k(K[X1, . . . , Xj ]))

for all j, k such that j+k = n and Aut(K2n+1, S2n(K)) contains the subgroups

Φj,2k+1(K)(Sj,2k+1(K[X1, . . . , Xj ]))

for all j, k such that j + k = n.

At the end, let K be a field of characteristic different from two and with

i ∈ K. Then, we can easily deduce from [6] that the group Aut (S2(K)) is

generated by O(3,K) and the image of Φ1,1(K). We close this section with

Conjecture 2.4: For any n ≥ 1:

(a) the group O(2n + 1,K) and the images of Φj,2k+1(K) with j + k = n

generate Aut(K2n+1, S2n(K));

(b) the group O(2n,K) and the images of Φj,2k(K) with j + k = n generate

Aut(K2n, S2n−1(K)).
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We point that that Conjecture 2.4 holds for n = 2.
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