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ABSTRACT

Let K be an infinite field with characteristic different from two and
S™(K) the n-sphere over K. We show that ambient polynomial automor-
phisms of S (K) preserve the quadratic form xg +---+22 and the group
Aut (K™1,S?(K)) of such automorphisms of S?(K) is isomorphic to the
(n 4 1)-orthogonal group O(n + 1, K) provided K is real.

Next, the restriction map Aut(K?3,S2(K)) — Aut(S?(K)) yields a
surjection provided K is an algebraically closed field as well. Furthermore,
for any such a field K, there is an imbedding

m(m—1)
2

K[X1...,Xm] tmn s Aut (K2t g2man—l ),
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Introduction

Given an algebra A over a field K, a description of the automorphism group
Aut (A), one of its most important characteristic, is really a very hard problem.
A geometric counterpart of that is a description of polynomial automorphisms
Aut (V) of the corresponding affine variety V. Though that problem for the
plane K? was settled in [4, 5], the problem of finding all polynomial automor-
phisms of K? is still open. By [8], polynomial automorphisms of hypersurface
of degree d > 3 in the (n + 1)-projective space are finite except for some cases.
In the light of [1], the automorphism group Aut (S!(K)) of the circle S*(K) over
an infinite field K is isomorphic to the orthogonal group O(2, K). Furthermore,
by the results of [2], the circle is the only compact connected curve with such
an infinite group provided K is the field of reals.

Polynomial automorphisms of the hypersurface in K? given by zfz; = P(z2)
with n > 1 were considered first in [6] for n = 1 and then in [7] for n > 1. In
particular, automorphisms of the 2-dimensional sphere S?(K) over K could be
derived, provided i € K with i? = —1. In the light of [2], given a hypersurface
V determined by a proper polynomial map R"t! — R over the reals R for
n > 0, the group Aut (R"*1, V) of ambient automorphism of V' is isomorphic
to an algebraic subgroup of the orthogonal group O(g) for some ¢. The aim
of this note is studying the automorphism groups Aut (S"(K)) and ambient
automorphisms Aut (K", S"(K)), where S*(K) is the n-sphere over a field
K.

Section 1 investigates the group Aut (K"*1, S"(K)) and studies the restric-
tion map p, (K", S"(K)) : Aut (K", S"(K)) — Aut (S*(K)). We generalize
the result of [2] and derive in Proposition 1.5 that the group Aut(K"*!, S") coin-
cides with polynomial automorphisms of K"*! preserving the form a3+ - - +22
provided K is an infinite field with characteristic different from two. We derive
in Corollary 1.6 that Aut (K", S"(K)) = O(n + 1, K), provided K is a real
field. In Proposition 1.10 we make use of [1] to show that

pr (2,81 (K)) : Aut (2,81 (K)) — Aut (8'(K)
is an isomorphism. Next, in Corollary 1.12 we derive from [6] that
oI5, 82 () - Aut (K, 82()) — Aut (S2(K)

is a surjection for any algebraically closed field K with characteristic different
from two.
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Section 2 is devoted to polynomial automorphisms for higher dimensional
spheres. In particular, an injective map

I([)(17 o ’Xm]w-i-nbn — % Aut (I(27n-i-n7 SQm+n—1(K))

of the (W +mn)-th Cartesian power of the polynomial ring K[X1, ..., X,]
endowed with an appropriate group structure is constructed.

ACKNOWLEDGMENTS. The authors are grateful to the referee whose comments
helped to make this paper more transparent.

1. Ambient polynomial automorphisms

Let K[Xy,...,X,] be the polynomial ring in indeterminates Xy, ..., X, over a
field K. Given an affine irreducible variety V' C K"*1 write Aut (V) (resp.,
Aut (K™+1,V)) for the group of polynomial (resp., ambient) automorphisms of
V. Clearly, we have the restriction map

pn(K™TL V) 2 Aut (K™ V) — Aut (V).

Note that the group Aut (V) is anti-isomorphic to the group of K-automor-
phisms of the ring K[V] of regular functions on V provided K is algebraically
closed.

Now, let

S"(K) = {(z0,...,7n) € K" 22+ +22 =1}

be the n-sphere over K. If the field K is finite then it is well-known that
Aut (S*(K)) coincides with the group of self-bijections of S”(K). For K with
characteristic two, the sphere S™(K) is actually the hyperplane given by
2o+ -+ x, = 1. Then, the polynomial map ® : S*(K) — K™ given by
O(zo,...,xn) = (T1,...,2y) for (xo,...,z,) € S"(K) yields isomorphisms
of the groups Aut(S*(K)) and Aut (K" S*"(K)) with Aut(K") and
Aut (K™, K™), respectively. Furthermore, the map ® and the restriction map
pn (KL SM(K)) : Aut (K™, S™(K)) — Aut (S?(K)) lead to a splitting short
exact sequence

1 — Kern, — Aut (K" K™) % Aut (K™) — 1
of groups, where

(077771(50)(1'17 s 7xn)) = 50(075017 s 7xn)
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for any p € Aut (K", K™) and (21, ...,7,) € K™. Note that any polynomial
p1(Xo0), .-y pn(Xoy ..., Xn—1) € K[Xy,...,X,] gives rise to the polynomial au-
tomorphism

(aXo, X1+ Xop1(Xo), ..., Xy + Xopn(Xo, ..., Xn-1))

if @ # 0. Such automorphisms form a subgroup of € Kern,.

Remark 1.1: If K is a finite field, then the restriction map
pu(K™H,S7(K)) : Aut (K™, 8 (K)) — Aut (8" (K)

is obviously surjective but never injective.

For the rest of this paper we always assume the field K to be infinite and
with characteristic different from two.

Let (z,y) = >0 gy for & = (20,...,%0),y = (Y0, .., yn) € K"T1. Write
Gpni1(K) for the monoid of all polynomial maps ¢ : K"*! — K™t such that
(¢(x),p(x)) = (z,z) for any € K" and observe that if K is a real field,
then deg(p) < 2 for ¢ € Gny1(K). We recall that a field K is called real if
—1# 23+ + 22 for any 21,...,7, € K. It is also clear that O(n + 1, K) C
Gri1(K), where O(n + 1, K) denotes the (n + 1)-orthogonal group over K.

PROPOSITION 1.2: If ¢ € Aut (S™(K)) is given by polynomials of global degree
at most one, then ¢ € O(n + 1, K).

Proof. Let ¢ = (@o,...,¢n) and write ps(Xo,...,Xn) = Y/ ast Xt + as for

s =0,...,n or in the matrix form ¢(X) = AX + a, where A = [as]o<s,t<n,
ao Xo

a=1|:)and X = | : |. If z € S"(K), then certainly p(+z) € S"(K).
An Xn
Hence, 1 = (p(£x), p(x)) = (£ Ax+a, L Az+a) = (Az, Az) £2(Az, a)+(a, a).
This implies (Az,a) = 0 and (Az, Az) + (a,a) =1 for all x € S"(K).
Now, we show that (a,a) = 0. In fact, suppose that (a,a) # 0 and consider
¢ ¢ S"(K), where K is the algebraic closure of K. By means of [1], the

V(a,a)

sphere S"(K) is Zariski dense in S"(K) so we may regard ¢ as an automorphism
of S*(K). But there is x € S"(K) with ¢(x) = Az + a = —2— and so

V{a,a)

<aa a> = <<p(l‘), a> = (Ax,a) + <a7 a> = <a7 a>'
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Then (a,a) =1 and p(z) = Az + a = a imply Az = 0. Consequently, o(—z) =
—Ax +a = a = p(z). But ¢ is injective, so —z = z and this leads to a
contradiction because z € S™(K).

Therefore A'A = Ip,4q ie., A € O(n+ 1, K). This also implies (z, A'a) =0
for all z, and so a = 0 and consequently ¢ € O(n + 1, K). |

If o = (po,...,pn): K" — K" is a polynomial map, write

9¢0 9¢0
Oxo """ Oxp
Jo=1| .........
Oxg """ Oxp

for its Jacobian.

PROPOSITION 1.3: If p € Gpy1(K) then the following four conditions are equiv-
alent:

(a) #(0) =

(b) ©71(0) 75@

(c) (Jp)(0) € O(n+1,K);

(d) det (J¢)(0) # 0, where Jy is the Jacobian of .

Proof. The condition (¢(z), p(z)) = (x,z) for € K™*! implies

0 0]
6—%@(95)7@(33» = 6—%@7@
or equivalently >°1" o ¢;(x )6‘“ (x) =z for ¢ = (po,.--,¢n), j=0,...,n and
x = (v9,...,7,) € K™ Therefore, we have in the matrix form
(1) (Jo) () p(z) =

for z € K™t and this clearly gives the equivalence of (a) and (b).
Then, we derive from (1)

(p(@), (Jo)(x)a") = (z,2")

for any =, 2’ € K™*! and so, replacing «, 2’ — Az we obtain

Me(A), (Jo)(Aa)a) = Nz, 2)

for any A € K. Hence,

(2) (p(Ax), (Jo)(A)z) = Mz, 2)
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for all A € K because both sides are polynomials in A and the field K is infinite.
Applying d% to (2), we obtain

d
{(Zx (TP} (Az)z, o(Az)) + ((Jp)(Az)z, (Jp)(Ar)a) = (z, ).

Now, for A = 0, we have

(3) <d% (Jo)(Az)z|x=0, #(0)) + ((J#)(0)z, (J©)(0)) = (2, ).

Then, from (3) we deduce that (a)=(c).

The implication (¢)==(d) is obvious since det (J¢)(0) = £1 if (Jp)(0) €
O(n+1,K).

To show (d)==(a) observe that for A = 0, (2) gives (¢(0), (Jp)(0)x) = 0 for
any z € K"!; and since the matrix (J¢)(0) is invertible, we obtain ¢(0) = 0
and the proof is complete. |

COROLLARY 1.4: Any element ¢ € Gp+1(K) such that ¢(0) = 0 can be written
as a product of an element in O(n+1, K) and ¢ € G,,41(K) such that ¢(0) = 0
and (J¥)(0) = I,+1 and so (x) = x + a(x) + - - - + ¢ (x), where ¢4(x) is the
homogeneous component of 1) with degree d ford =2, ...,t.

Furthermore, we may state:
PROPOSITION 1.5: Aut (K" S*(K)) = Aut (K" ™) N Gpi1(K).

Proof. The inclusion Aut (K" ™) NG,41(K) C Aut (K" S"(K)) is clear. To

show the opposite inclusion, given ¢ = (o, ..., ¢n) € Aut (K" S"(K)), the

polynomial >_;" ; ¢?—1is irreducible because Y XZ—1isso. But ., ,¢?—1

vanishes on the sphere S™ and so

n n
> oot -1=a( L x2-1)
i=0 i=0
for some o € K*. Then we derive, as in the proof of Proposition 1.3:

(4) (Jo)(x)'p(z) = ax

for all x € K™*!. If we choose now z € K" such that ¢(z) = 0, (4) gives
x = 0. Therefore, p(0) =0 and so a = 1 and then ¢ € Gp41(K). |

Then, by Proposition 1.5 and the obvious degree argument consideration, we

can derive:
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COROLLARY 1.6: If K is a real field, then G,11(K) = O(n + 1,K) =
Aut (K" S*(K)).

The following example shows that if ¢ € K then there are polynomial maps
¢ € Gpi1(K) with 9(0) # 0 and so Gp41(K) € Aut (K", S"(K)) in general.

Example 1.7: For n > 2, consider the polynomial map ¢ : K"*! — Knt!
given by

1 1
(30, -+, Tn) = (E(ngr--'Jrz%),i(§(az3+~~~+xi)—1),1,0,...,0)

for any (zg,...,z,) € K"
It is obvious that ¢ € G,,41(K) but ¢(0) = (0, —4,1,0,...,0).

Given a real field K, write K (i) for its extension with i2 = —1, U(n+1, K (i))
for the (n + 1)-st unitary group over the field K (i) and U (K (i)" ™1, K x K(i)")
for the subgroup of U(n + 1, K(i)) formed by ambient maps with respect to
K x K(i)™ If ¢ = (¢0,-..,¢n) € Aut K(i)"*! and

= @ (Xoy ooy Xy Xy, X)) 480 (Ko Xy Xby o, XL
for j = 0,...,n, then we get (¢}, ¢Y,..., 0L, ¢l) € Aut(K?"2). Because
S*HH(K) C K(i)"™! and $**(K) C K x K(i)" , in view of Corollary 1.6, we
can state:

Remark 1.8: Let K be a real field. Then, Aut(K(i)"*!,S*"*1(K)) =
U(n+1,K(i)) and Aut (K x K(i)",S*"(K)) = U(K(i)"*, K x K(i)").

By [3], an affine variety V C K™ *! is called an identity set for polynomial
automorphisms of K™+! if the restriction map

pn(K" T V) Aut (K™ V) — Aut (V)
is a monomorphism. Thus, in the light of the discussion above, we can state:

THEOREM 1.9: Let K be a real field. Then, for n > 0:

(a) S™(K) is an identity set for polynomial automorphisms of K"*1;
(b) $?"*TY(K) is an identity set for polynomial automorphisms of K (i)".
(c) S§*(K) is an identity set for polynomial automorphisms of K x K (i)™.

Furthermore, it holds:
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PROPOSITION 1.10: The restriction map
o1 (K281 (K)) : Aut(K2,S'(K)) — Aut (S'(K))
is an isomorphism.

Proof. In virtue of [1], it holds Aut(S'(K)) = O(2,K). Hence, the map
p1(K2,SYK)) : Aut (K?,S'(K)) — Aut (S*(K)) is surjective because O(2, K )C
Aut (K?,SY(K)).

Now, if o = (0, ¢1) € Ker p1(K?,S*(K)), then, by Proposition 1.5, g2 +¢3 =
X2 + X2. Because S'(K) is Zariski dense in S'(K ), we may assume that i € K
with i = —1. Hence, (@ + ip1)(po — ip1) = X& + X7. But o and ¢
are algebraically independent and so deg (¢ + iv1) = deg (o — iv1) = 1 and
degypy = degp; = 1. By Proposition 1.2, we get that ¢ € O(2,K). But
¢ € Kerpy (K2, SY(K)) so ¢ is the identity automorphism of K?2. |

Now, we aim to show the surjectivity of the restriction map
pa(K3,S2(K) : Aut (K*,S%(K)) — Aut (2(K))

for any algebraically closed field K. We point out that over such a field the
2-sphere S?(K) might be described by zoz; + 23 = 1.

Given an algebraically closed field K, Makar-Limanov [6] considers the factor
K-algebra K[Xy, X1, X2]/(XoX1 — p(X2)) for any polynomial p € K[X]. If
p(X2) =1 — X7 then [6, Theorem] yields:

COROLLARY 1.11: Let K be an algebraically closed field K.
Then, the group Aut(K[Xo, X1, X2]/(XoX1 + X2 — 1)) is generated by the
following automorphisms:

(1) hyperbolic rotations Hy(Xo) = AXo, Hx(X1) = A1 X1, Hy(X2) = Xo
for A € K*;

(2) involution I(Xo) = X1, I1(X1) = Xo, I(X2) = Xo;

(3) the symmetry S(Xo) = Xo, S(X1) = X1, S(X2) = —Xy;

(4) triangular A,(Xo) = Xo, Ap(X1) = X1 — 2Xop(Xo) — Xop*(Xo),
Ap(Xz) = Xa + Xop(Xo) for p(X) € K[X].

Now, consider the isomorphism of K-algebras

K[Xo, X1, Xo]/(XoX1 + X3 — 1) — K[Xo, X1, X5] /(X2 + X2 + X2 — 1)
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given by the assignment (X, X1, X2) — (Xo + iX1, Xo — iX3, X5). Then, its
inverse sends (Xo, X1, Xo) — (Fof2 XX ¥,

Thus, those four types of the maps above generate
Aut (K [Xo, X1, Xa]/(Xg + X7 + X3 - 1))

and they certainly lead to generators of the group Aut (S?(K)) as well. But any
of those generators is extensible to a polynomial automorphism of K3. Thus,
in view of Corollary 1, we can state:

COROLLARY 1.12: Let K be an algebraically closed field K. Then, the restric-
tion map

p2(K3 S*(K)) : Aut (K3 S*(K)) — Aut S*(K)

is a surjection.

By [1], the sphere S?(K) is Zariski dense in S?(K), where K is the algebraic
closure of K. Thus, any polynomial automorphism ¢ € Aut(S?*(K)) yields
@' € Aut (S?(K)) rising, in the light of the above, a polynomial automorphism of
K as well. But we cannot say that ¢’ restricts to a polynomial automorphism
of K3 to claim that the restriction map po(K3,S?(K)) : Aut (K3, S*(K)) —
Aut (S?(K)) is a surjection.

For a real field K, by Corollary 1.6, Aut(K" ™ S"(K)) = O(n+1, K). Hence,
pn (K" SM(K)) : Aut (K™, S™(K)) — Aut (S*(K)) is an injection.

We close this section with

CONJECTURE 1.13: For any n > 1, the restriction map
pu(K™ 1 S7(K)) : Aut (K™, 87 (K)) — Aut (S"(K))

leads to:

(a) a surjection, provided K is an infinite field with characteristic different
from two;

(b) an isomorphism, provided K is a real field. Consequently, Aut (S™(K)) =
O(n+1,K).

2. Polynomial automorphisms for higher dimensions

Now, we aim to present another set of generators of the group

Aut(K[Xo, X1, Xo]/(Xo X1 + X2 —1)).
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Consider the set {£1} x K* x K[X] with the multiplication
o: ({1} x K* x K[X]) x ({£1} x K* x K[X]) — {1} x K* x K[X]
given by
(e, A (X)) 0 (€, X, /(X)) = (', AN, &N 7 Ip(X 1 X) + /(X))

for

(&, A, p(X)), (¢, N, p'(X)) € {£1} x K* x K[X].
Then, the pair ({£1} x K* x K[X],0) is a group, where (1,1,0) is its unit ele-
ment and (g, A\, p(X))™! = (e, A7}, —eAp(AX)). Furthermore, for (¢, \, p(X)) €
{£1} x K* x K[X], the map

SDI : K[XO) X17X2] - K[XO) X17X2]

given by:

¢'(Xo) = AXo,

¢'(X1) = AKX = 2eXop(AXo) — AXop*(AXo),

(‘DI(XQ) = EXQ + )\Xop()\Xo)
is a K-algebra automorphism with the inverse given by:

/

¢ H(Xo) = A1 Xy,
¢ H(X1) = A(X + 2X2p(Xo) — Xop*(Xo)),
©' TN Xy) = e(Xa — Xop(Xo)).

We recall that a K-automorphism of K[Xj,...,X,] is called elementary it it
has a form

(Xo,...,Xn) — (X07---7Xi—17)\Xi +ani+1a---7Xn]a

where A € K* and p € K[Xo,...,Xi—1, Xit1,...,Xp) for some i =0,...,n. A
K-automorphism of K[X,...,X,] is tame if it is a composition of elementary
automorphisms. Note that ¢’ is a tame automorphism of K[Xg, X7, Xo| as the
composition of three elementary automorphisms.

Furthermore, the relation ¢'(Xo)¢'(X1) + ¢'(X2)* = XoX1 + X3 shows
that ¢’ yields a K-automorphism ¢ : K[Xg, X1, Xa]/(XoX1 + X2 — 1) —
K[Xo, X1, X2]/(XoX1 + X3 —1). Tt is easy to check that the assignment above

determines a group monomorphism

P {£1} x K* x K[X] — Aut(K|[Xo, X1, Xo]/(Xo X1 + X2 — 1)).
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If p(X) = anX™ + -+ + a1 X + ap with a, # 0 and (g, \,p(z)) €
{£1} x K* x K[X], then clearly
(e, \,p(X)) = (e,A,0)0(1,1,p(X)) = (1,A,0) 0 (6,1,0) 0 (1,1, p(X)) =
(1,A,0)0(e,1,0) 0 (1,1,ap) 0---0 (1,1,a, X™).
This shows that the image of the monomorphism
®: {+1} x K* x K[X] — Aut(K[Xo, X1, Xa]/(Xo X1 + X5 — 1))

is generated by the following three types of automorphisms:

(1) (hyperbolic rotations) Hy(Xo) = AXo, HA(X1) = A71X1, Hy(X2) = Xo
for A € K*;

(2) (the symmetry automorphism) S(Xo) = Xo, S(X1) = X1, S(X2) = — X

and

(3) (triangular automorphisms)

Axn(Xo) = KXo, Axn(Xy) = X1 — 20X X{ — A2Xg™H,
Ay n(X2) = Xo + AXFT!

for A€ K* and n > 0.

But (1,),0) 0 (1,1,X™) o (1,A71,0) = (1,1, A1 X™) and the polynomial
X"+ — X has a root in K because the field K is algebraically closed. Finally,
in the light of Corollary 1, we can state for an algebraically closed field K

Remark 2.1: The group Aut(K[Xo, X1, X2]/(XoX1 + X3 — 1)) is generated by
the automorphisms (1)—(3) from Corollary 1 and
(4)  triangular Ay, (Xo) = X0, Arn(X1) = X1 — 2Xo X' — X2

A (X2) = Xo + X3 forn > 0.
In particular, the subgroup Aut; (K[Xo, X1, Xa]/(XoX1 + X2 — 1)) of automor-
phisms with degree at most one is generated by: Hy, I, S and A g.

Hence, generators of the group Aut (K[Xo, X1, Xo]/(XoX1 — 1 + X3)) de-
scribed in Remark 2.1 correspond to the following ones of

Aut (K[Xo, X1, X /(X5 + X7 + X3 — 1))

in matrix forms:

Any hyperbolic rotation H) yields the rotation
H : K[Xo, X1, Xo] /(X3 + X7+ X3 — 1) — K[Xo, X1, Xo]/(X§ + X7 + X3 1)
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Aloa iy 0
. . 2 2 .
given by the matrix | _;a-1-x) a-l4a 0 from the special orthogonal group
2 2
0 0 1

SO(3,K) for A € K*.
The involution map I is sent to the map

I K[Xo, X1, Xo]/(XE+ X7+ X3 -1 K[Xo, X1, Xo] /(X2 + X7+ X3 1)

) —

. (o0

given also by the orthogonal matrix (8 _0 @l))
The triangular map A; , produces a map

AL, K[Xo, X1, Xo] /(X3 + X7+ X5 —1) — K[Xo, X1, Xo] /(X3 + X7+ X5 —1)

given by:
Xo +iX1)*" Xo+iX o n
AL (Xo)=(1- (O%)Xo - (O%Xl — (Xo +1iX1)" Xy,
(Xo +1iX7)*" Xo +iX1)%" ) )
AL (X)) = *Z(O#Xo + (1 + (0+1))X1 —i(Xo +1X1)"Xo
and

All n( ) = (X0+ZX1)nX0+Z(XO+ZX1)nX1 +X2
Observe that A}, can be also given by the matrix from SO(3, K[Xo +iX1]):

{— W _iw —(Xo +iXy)"
—XoiX)T g Kok XO® x4 X )
(Xo +4iX1)"  i(Xo+1iX1)" 1

The symmetry map S is sent to

S KXo, X1, Xo]/(XZ+ X2+ X2 1) = K[Xo, X1, Xo] /(X2 + XZ + X2 1)
given also by the orthogonal matrix (é g 0

Given ¢ € Aut(K"H S"(K)), let ¢ T : K™t — K"t be such that

popt = ¢ toyp =idgnsi. Then, (Jo 1) (o(z))(Jp)(z) = I,4+1 and con-

sequently ((Jo)(z))™! = (Jp~1)(¢(x)). Since ¢ € Aut (K™, (S™)), by Propo-
sitions 1.3 and 1.5, we have det (Jp)(x) = det (Jy)(0) = £1. Furthermore, the
relation (Jo)(z)t¢(z) = z yields o(z) = ((Jp)(z)) ')z for x € KT
Therefore, by composing with (J¢)(0)~! we can always assume that ¢ is
such that (Jp)(0) = I,11 and det (Jp)(z) = 1 for x € K", Hence, given
© € Aut (K" S"), we can always assume, by composing with an element of

O(n + 1, K), that p(z) = ¢(z)x for x € K", g € SL(n+1,K[Xo,. .., Xy))
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with @(0) = I,41 for the special linear group SL(n + 1, K[Xy,...,X,]) over
the polynomial ring K[Xo, ..., X,].
Certainly, O(n+ 1, K) C Aut (K"*!,S"(K)), Aut (S*(K)) for n > 1 and any
field K. Now, we plan to find other groups included into Aut (K", S*(K)).
Let K be a commutative ring and denote by Sy, »(K) the set of all couples
(@, A), where a € M, ,(K) is an m X n-matrix over K and A € M,,(K) is an
m X m-matrix over K such that

A+ X +aadt =0,

where a’ denotes the transpose of the matrix a.

We also consider the case n = 0 and S, o(K) consists of the additive group
of skewsymmetric m x m matrices over K.

For m,n > 1, we define a group structure on Sy, ,(K) by

(a,\).(a", ) = (a+ad X+ )N —ad).

The definition is clearly correct, the unit element is (0, 0), the inverse of (a, A)
is (—a, \') and associativity is easily checked.

Observe that for 1/2 € K, there is an obvious bijection K252 mn 2,
S (K).

The following proposition is easy to check.

PROPOSITION 2.2: For i € K with i> = —1, there is a group monomorphism

Pmn(K) 2 Spn(K) — SO(2m +n, K)

given by
I + A ) a
man(K)(a,A) = iA L, —X da|,
—at —iat I,

forn > 1 and

Iy + A i\
m K)(\) = . )
oK) ( N ImA>

for n = 0, where I,,, is the unit m X m-matrix.
For (a,\) € Spn(K[X1,...,Xn]) define a polynomial map

(I)m,n(K)(a, )\) : K277L+n _ K27n+n
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by
Iy + ANz +iy) iXx +iy) alx +iy) \ (=
Dy (K)(a, N)(z,y, 2)= iz +iy) L, — Mz +iy) da(z+iy) ||y |,
—a(z +iy)* —ia(x + iy)* I, z
where = (21, ..., Zm), Yy = (Y1, ..., Ym) and z = (21,..., 2n).

The next proposition is again an easy checking.

PROPOSITION 2.3: The above map ®,, ,(K)(a,\) is a polynomial automor-
phism of K™+ &, . (K)(a,\) € Gamin(K) for (a,\) € Spmn(K[X1,..., X))
and

Bpn(K) : Sun(R[X1, .-y Xon]) — Aut(K2mHm, 2+ —1(K))
is a group monomorphism.
In this way, we get that the group monomorphism
Bpn(K) : Sun(R[X1, .- Xon]) — Aut(K2mHm, 2+ —1(K))
leads to an imbedding
K[X1 ..., Xp] "5 4mn | Aqg (K2mtn, §2mtn—1(f)).

provided 1/2 € K.
Observe, in particular that Aut(K?",S?>"~1(K)) contains the subgroups

Dok (K) (520 (K[X1, - ., X))
for all j, k such that j +k = n and Aut(K?"! S?"(K)) contains the subgroups
Dj o141 (K) (Sj 2041 (KX, -, X))

for all j, k such that j +k =n.

At the end, let K be a field of characteristic different from two and with
i € K. Then, we can easily deduce from [6] that the group Aut (S*(K)) is
generated by O(3, K) and the image of ®; 1 (K). We close this section with

CONJECTURE 2.4: For any n > 1:

(a) the group O(2n + 1, K) and the images of ®;op41(K) with j +k =n
generate Aut(K*" 1 §?"(K));

(b) the group O(2n, K) and the images of ®; o, (K) with j + k = n generate
Aut(K?", S*"~Y(K)).
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(1]
(2]

(3]

We point that that Conjecture 2.4 holds for n = 2.
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